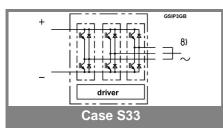

SKiiP 1803GB172-3DW

SKiiP[®] 3

2-pack-integrated intelligent Power System

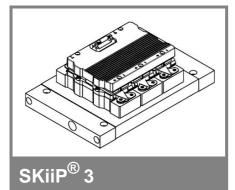

Power section

SKiiP 1803GB172-3DW

Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- AC connection busbars must be connected by the user; copper busbars available on request



Absolute	Maximum Ratings	$\Gamma_s = 25^{\circ}C$ unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V _{CES} V _{CC} ¹⁾		1700	V				
V _{CC} ¹⁾	Operating DC link voltage	1200	V				
V _{GES}		± 20	V				
I _C	T _s = 25 (70) °C	1800 (1350)	А				
Inverse o	Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	1400 (1050)	А				
I _{FSM}	T _j = 150 °C, t _p = 10 ms; sin	10200	А				
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	520	kA²s				
T _j , (T _{stg})		- 40 + 150 (125)	°C				
V _{isol}	rms, AC, 1 min, main terminals to heat sink	4000	V				
I _{AC-terminal}	per AC terminal, rms, T _s = 70 °C,	400	А				
	T _{terminal} <115 °C						

Characteristics					T _s = 25°	$T_s = 25^{\circ}C$ unless otherwise specified			
Symbol	Conditions				min.	typ.	max.	Units	
IGBT									
V _{CEsat}	I _C = 900 A, measured at te	T _j = 25 (rminal	125) °C;			1,9 (2,2)	2,4	V	
V _{CEO}	T _j = 25 (125					1 (0,9)	1,2 (1,1)	V	
r _{CE}	T _j = 25 (125) °C; at terminal				1 (1,4)	1,3 (1,7)	mΩ		
I _{CES}	V _{GE} = 0 V, T _i = 25 (125		ES,			3,6 (216)		mA	
E _{on} + E _{off}	I _C = 900 A,	V _{CC} = 90	00 V			585		mJ	
	T _j = 125 °C	, V _{CC} = 1	200 V			863		mJ	
R _{CC+EE} ′	terminal chip, T _i = 25 °C				0,17		mΩ		
L _{CE}	top, bottom					4		nH	
C _{CHC}	per phase,	AC-side				3		nF	
Inverse of	diode								
V _F = V _{EC}	I _F = 900 A, measured at te	T _j = 25 (′ rminal	125) °C			2 (1,8)	2,15	V	
V _{TO}	T _i = 25 (125	5) °C				1,1 (0,8)	1,2 (0,9)	v	
r _T	$T_{i} = 25 (125)$	5) °C				1 (1,1)	1,1 (1,2)	mΩ	
E _{rr}	I _C = 900 A,	V _{CC} = 90	00 V			108		mJ	
	T _j = 125 °C	, V _{CC} = 1	200 V			128		mJ	
Mechani	cal data								
M _{dc}	DC termina	,			6		8	Nm	
M_{ac}	AC terminals, SI Units			13	• •	15	Nm		
W	SKiiP [®] 3 System w/o heat sink				2,4		kg		
W	heat sink					5,2		kg	
	character								
-		to bu	lit-in tem	perature	e sensor	(acc.IEC		i i	
R _{th(j-s)I}	per IGBT						0,017	K/W	
R _{th(j-s)D}	per diode	<i>.</i> .				tau	0,033	K/W	
Z _{th}	R _i (mK/W) (max. values)				4				
7	1 1,4	2 6,8	3 7,8	4 0	1 69	2 0,35	3 0,02	4 1	
Z _{th(j-r)} I	1,4 2,6	0,0 4	7,0 17,7	17,7	50	0,35	0,02 0,25	0,04	
Z _{th(j-r)D} z			,	,		15		,	
Z _{th(r-a)}	4,6	4,7	1,1	0,6	48	15	2,8	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

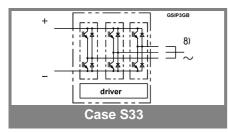
SKiiP 1803GB172-3DW

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 1803GB172-3DW

Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		$\Gamma_a = 25^{\circ}C$ unless otherwise specified		
Symbol	Conditions	Values	Units	
V _{S2}	unstabilized 24 V power supply	30	V	
V _i	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V _{isolIO}	input / output (AC, rms, 2s)	4000	V	
VisoIPD	partial discharge extinction voltage, rms, $Q_{PD} \leq 10 \text{ pC}$;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	9	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	9	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	ristics	(T _a = 25			= 25°C)
Symbol	Conditions	typ.	max.	Units	
V _{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	380+34*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V _{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1500		A
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level		1075		
	$(I_{analog} OUT = 10 V)$		1875		A
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	U _{DC} -protection (U _{analog OUT} = 9 V);	i	not mplemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

